GCE

Mathematics

Advanced GCE

Unit 4731: Mechanics 4

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i)	Using $\omega_{2}=\omega_{1}+\alpha t, \quad 750=950-0.8 t$ Time taken is 250 s	M 1 A 1 $[2]$	
(ii)	Using $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta, \quad 200^{2}=220^{2}-1.6 \theta$ Angle is 5250 rad	M 1 A 1 $[2]$	
(iii)	Angle is 20π rad Using $\theta=\omega_{2} t-\frac{1}{2} \alpha t^{2}, \quad 20 \pi=0+0.4 t^{2}$	B 1 M 1	or equivalent; e.g. finding $\omega_{1}=10.03$ and then $t=\omega_{1} \div 0.8$
	Time taken is $12.5 \mathrm{~s} \quad(3 \mathrm{sf})$ $[3]$	Accept $\sqrt{50 \pi}$ or $5 \sqrt{2 \pi}$	

2	$\begin{aligned} m & =\int_{0}^{a} k \mathrm{e}^{-\frac{x}{a}} \mathrm{~d} x \\ & =k\left[-a \mathrm{e}^{-\frac{x}{a}}\right]_{0}^{a}\left(=k a\left(1-\mathrm{e}^{-1}\right)\right) \\ m \bar{x} & =\int_{0}^{a} x k \mathrm{e}^{-\frac{x}{a}} \mathrm{~d} x \\ & =k\left[-a x \mathrm{e}^{-\frac{x}{a}}-a^{2} \mathrm{e}^{-\frac{x}{a}}\right]_{0}^{a} \\ & =k a^{2}\left(1-2 \mathrm{e}^{-1}\right) \\ \bar{x} & =\frac{k a^{2}\left(1-2 \mathrm{e}^{-1}\right)}{k a\left(1-\mathrm{e}^{-1}\right)} \\ & =\frac{a\left(1-2 \mathrm{e}^{-1}\right)}{1-\mathrm{e}^{-1}}=\frac{a(\mathrm{e}-2)}{\mathrm{e}-1} \end{aligned}$	M1 A1 M1 M1 A1 A1 A1 [7]	For $\int \mathrm{e}^{-\frac{x}{a}} \mathrm{~d} x$ For $-a \mathrm{e}^{-\frac{x}{a}}$ For $\int x \mathrm{e}^{-\frac{x}{a}} \mathrm{~d} x$ Integration by parts For $-a x \mathrm{e}^{-\frac{x}{a}}-a^{2} \mathrm{e}^{-\frac{x}{a}}$ For $a^{2}\left(1-2 \mathrm{e}^{-1}\right)$ or exact equivalent

$\begin{aligned} & \hline 3 \\ & \text { (i) } \end{aligned}$	WD by couple is $C \times \frac{\pi}{2}$ Change in PE is $5 \times 9.8 \times 0.9$ By conservation of energy, $C \times \frac{\pi}{2}=5 \times 9.8 \times 0.9$ Moment of couple is 28.1 Nm (3 sf)	B1 B1 M1 A1 [4]	Must clearly be PE (not moment) Equation involving WD and PE
(ii) (a)	$\begin{align*} & I=\frac{4}{3} \times 5 \times 0.9^{2} \quad(=5.4) \\ & 28.075=5.4 \alpha \tag{3sf} \end{align*}$ Angular acceleration is $5.20 \mathrm{rad} \mathrm{s}^{-2}$	B1 M1 A1 ft [3]	Can be earned anywhere in the question Applying $C=I \alpha$ ft is $C \div I$
(ii) (b)	$28.075-5 \times 9.8 \times 0.9=5.4 \alpha$ Angular acceleration is (-) $2.97 \mathrm{rads}^{-2} \quad(3 \mathrm{sf})$	M1 A1 [2]	Rotational equation of motion (3 terms) (Allow 1.8 instead of 0.9 etc)

4 (i)		B1 M1 A1 M1 A1 ag [5]	Negative sign is essential, but may be implied later Any correct form Expressing EPE in terms of $\cos 2 \theta$
(ii)	$\begin{align*} & \frac{\mathrm{d} V}{\mathrm{~d} \theta}=\frac{1}{2} m g a(4 \sin 2 \theta-2 \cos 2 \theta) \\ & \frac{\mathrm{d} V}{\mathrm{~d} \theta}=0 \text { when } 4 \sin 2 \theta=2 \cos 2 \theta \\ & \tan 2 \theta=0.5 \\ & \theta=0.232 \tag{3sf} \end{align*}$	B1 M1 A1 [3]	Equating to zero and solving Accept 13.3°
(iii)	$\begin{aligned} & \frac{\mathrm{d}^{2} V}{\mathrm{~d} \theta^{2}}=\frac{1}{2} m g a(8 \cos 2 \theta+4 \sin 2 \theta) \\ & \text { When } \theta=0.232, \quad \frac{\mathrm{~d}^{2} V}{\mathrm{~d} \theta^{2}}>0 \end{aligned}$ So the equilibrium is stable	M1 A1 [2]	Fully correct working only

$\begin{aligned} & \hline 5 \\ & (\mathbf{i}) \end{aligned}$	$\begin{aligned} & \left(\frac{4}{3} \pi a^{3}\right) \rho=10 M, \text { so } \rho=\frac{15 M}{2 \pi a^{3}} \\ & I=\sum \frac{1}{2}\left(\rho \pi y^{2} \delta x\right) y^{2}=\frac{1}{2} \rho \pi \int y^{4} \mathrm{~d} x \\ & \\ & =\frac{1}{2} \rho \pi \int_{-a}^{a}\left(a^{2}-x^{2}\right)^{2} \mathrm{~d} x \\ & \\ & =\frac{1}{2} \rho \pi\left[a^{4} x-\frac{2}{3} a^{2} x^{3}+\frac{1}{5} x^{5}\right]_{-a}^{a} \\ & \\ & =\frac{1}{2} \rho \pi\left(a^{5}-\frac{2}{3} a^{5}+\frac{1}{5} a^{5}\right) \times 2 \\ & \\ & =\frac{8}{15} \rho \pi a^{5} \\ & \\ & =\frac{8}{15} \times \frac{15 M}{2 \pi a^{3}} \times \pi a^{5}=4 M a^{2} \end{aligned}$	M1 M1 A1 A1 A1 A1 ag [6]	For $\int y^{4} \mathrm{~d} x$ Correct integral expression including limits For $a^{4} x-\frac{2}{3} a^{2} x^{3}+\frac{1}{5} x^{5}$
(ii)	$\begin{array}{r} \text { MI is } \begin{aligned} & 4 M a^{2}+M a^{2} \\ &=5 M a^{2} \end{aligned} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	$\begin{array}{r} - \text { Mga } \sin \theta=5 M a^{2} \ddot{\theta} \\ \ddot{\theta} \approx-\frac{g}{5 a} \theta \\ \text { Period is } 2 \pi \sqrt{\frac{5 a}{g}} \end{array}$	M1 M1 A1 [5]	Equation of motion Obtaining period
	$\begin{aligned} & \text { Alternative for last } 3 \text { marks of (ii) } \\ & 11 M \bar{x}=10 M(0)+M a \\ & \begin{array}{l} \bar{x}=\frac{1}{11} a \end{array} \\ & \text { Period is } 2 \pi \sqrt{\frac{I}{m g h}}=2 \pi \sqrt{\frac{5 M a^{2}}{11 M g \frac{1}{11} a}} \\ & \quad=2 \pi \sqrt{\frac{5 a}{g}} \end{aligned}$		Finding centre of mass Using formula Dependent on previous M1 Note $2 \pi \sqrt{\frac{I}{M g h}}=2 \pi \sqrt{\frac{5 M a^{2}}{M g a}}$ is M0

6 (i)	As viewed from P $\begin{aligned} x^{2} & =80^{2}+36^{2}-2 \times 80 \times 36 \cos 40^{\circ} \\ x & =57.30 \end{aligned}$ Relative velocity has magnitude $\frac{x}{3}=19.1 \mathrm{~km} \mathrm{~h}^{-1}$ $\begin{array}{r} \frac{\sin \alpha}{36}=\frac{\sin 40^{\circ}}{57.30} \\ \alpha=23.82^{\circ} \end{array}$ Relative velocity has bearing $40+\alpha=063.8^{\circ}$	M1 M1 A1 ag M1 A1 ag [5]	Suitable diagram showing relative velocity May be implied Or other valid method for finding a relevant angle
	OR, using components,Diagram East $\frac{80 \sin 40^{\circ}}{3}(=17.14)$ M1 North $\frac{80 \cos 40^{\circ}-36}{3}$ Speed $\sqrt{17.14^{2}+8.428^{2}}=19.1$ A1 ag Bearing $\tan ^{-1} \frac{17.14}{8.428}=063.8^{\circ}$ A1 ag M1		Implied by both components correct
(ii)	$\text { Shortest distance } \begin{aligned} d & =80 \sin 23.82^{\circ} \\ & =32.3 \mathrm{~km} \quad(3 \mathrm{sf}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$	or $36 \sin 63.8^{\circ}$
(iii)	$\begin{aligned} \frac{\sin \beta}{19.10} & =\frac{\sin 41.18^{\circ}}{28} \\ \beta & =26.69^{\circ} \end{aligned}$ Bearing of P is $105+\beta=131.7^{\circ} \quad(1 \mathrm{dp})$	M1 M1 A1 [3]	Velocity diagram May be implied (28 opposite a known angle between sides with positive and negative slopes) Using components for (iii) and (iv) M2A1 for $\theta=131.7^{\circ}$ or $v=39.4$ M1A1 for other quantity
(iv)	$\begin{gathered} \frac{v_{Q}}{\sin 112.13^{\circ}}=\frac{28}{\sin 41.18^{\circ}} \\ \text { Speed of } Q \text { is } 39.4 \mathrm{kmh}^{-1} \quad(3 \mathrm{sf}) \end{gathered}$	M1 A1 [2]	Or other valid method for finding speed

$\begin{array}{\|l\|} \hline 7 \\ (i) \end{array}$	$\begin{aligned} & X G=\sqrt{5} a \\ & I=\frac{1}{3} m\left\{a^{2}+(3 a)^{2}\right\}+m(\sqrt{5} a)^{2} \\ & \\ & =\frac{25}{3} m a^{2} \end{aligned}$	B1 M1 A1 [3]	For $I_{G}=\frac{1}{3} m\left\{a^{2}+(3 a)^{2}\right\}$ Using parallel axes rule
	$\begin{array}{ll} \hline \text { OR, other complete method, e.g. } & \text { M1 } \\ \frac{4}{3}\left(\frac{1}{6} m\right)\left(\left(\frac{1}{2} a\right)^{2}+a^{2}\right)+\frac{4}{3}\left(\frac{5}{6} m\right)\left(\left(\frac{5}{2} a\right)^{2}+a^{2}\right) & \text { A1 } \\ I=\frac{25}{3} m a^{2} & \text { A1 } \end{array}$		Correct expression for I
(ii)	$\begin{aligned} m g(\sqrt{5} a) & =I \alpha \\ \sqrt{5} m g a & =\frac{25}{3} m a^{2} \alpha \\ \alpha & =\frac{3 \sqrt{5} g}{25 a} \end{aligned}$	M1 A1 ag [2]	Allow, e.g. $m g(2 a)=I \alpha$
(iii)	$\begin{aligned} \frac{1}{2} I \omega^{2} & =m g a \\ \frac{25}{6} m a^{2} \omega^{2} & =m g a \\ \omega & =\sqrt{\frac{6 g}{25 a}} \end{aligned}$	M1 A1 ft A1 [3]	Equation involving KE and PE
(iv)	$\begin{aligned} H & =m(X G) \omega^{2} \\ & =m(\sqrt{5} a)\left(\frac{6 g}{25 a}\right) \\ & =\frac{6 \sqrt{5}}{25} m g \end{aligned}$ $m g-V=m(X G) \alpha$ $\begin{aligned} V & =m g-m(\sqrt{5} a)\left(\frac{3 \sqrt{5} g}{25 a}\right) \\ & =\frac{2}{5} m g \end{aligned}$ Force has magnitude $\sqrt{H^{2}+V^{2}}$ $\begin{aligned} & =\frac{2}{25} m g \sqrt{(3 \sqrt{5})^{2}+5^{2}} \\ & =\frac{2 \sqrt{70}}{25} m g \end{aligned}$	M1 A1 A1 ft M1 A1 A1 M1 A1 ag [8]	For using acceleration $r \omega^{2}$ Or (F parallel to $B A, \theta$ is angle $G X B$) $F-m g \sin \theta=m\left((A G) \omega^{2} \cos \theta-(A G) \alpha \sin \theta\right)$ ft from incorrect ω only Or $F=\frac{m g(2 \sqrt{5}+12)}{25}$ For using acceleration $r \alpha$ Or (R parallel to $A D$) $m g \cos \theta-R=m\left((A G) \omega^{2} \sin \theta+(A G) \alpha \cos \theta\right)$ Or $R=\frac{m g(4 \sqrt{5}-6)}{25}$ Or $\sqrt{F^{2}+R^{2}}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

